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Anomaly Detection with Deep Neural Networks

▶ Assumption: normal data points x ∈ X drawn from pin(x)
▶ Anomalies: A = {x : pin(x) < α}
▶ Learn fθ : X → R

outlier(x) =

{
1 if fθ(x) > τ

0 else
(1)

Testing:
▶ Test ability of fθ to distinguish between points drawn from pin

and several pi
out
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Types of Reproducibility [1]

Method Reproducibility:
▶ Reproducibility of the numerical results when the same

code gets executed

Results Reproducibility:
▶ Reproducibility of statistically similar results when a method

is reimplemented.

Inferential Reproducibility:
▶ Reproducibility of findings or conclusions in different

experimental setups.
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Challenging Aspects
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Nondeterminism in Network Optimization

Performance of DNNs depend on random seed [1, 2, 3, 4]
▶ Initialization, Data Ordering, Data Splitting
▶ Randomness in Algorithms (Dropout)
▶ Randomness in low-level libraries (CUDA)
▶ ...

Mitigation:
▶ Fix random seed
▶ Conduct repeated experiments with different random seeds,

varying all sources of nondeterminism
▶ use e.g. statistical tests
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Nondeterminism in Network Optimization

Figure: Estimated probability of method having the highest average
AUROC over a specific number of seed replicates of experiments on
the CIFAR10 dataset.
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Sensitivity to Hyperparameters

(a) Accuracy (b) Loss (c) AUROC

Figure: Classification accuracy and AUROC of MCHAD for varying
network widths and depths for a ResNet architecture [5], trained on the
CIFAR-10 dataset.
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Sensitivity to Hyperparameters

Mitigation:
▶ Perform sweeps to investigate influence of hyper parameters
▶ Allocate equal computational budget to each tested

method [1]
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Complexity of Experiments

▶ (Code) complexity increases likelihood of errors

Target leakage
▶ E.g., by overlap between datasets
▶ In pre-trained weights
▶ Inconsistent pre-processing

Mitigation:
▶ “Outsource” complexity to third parties
▶ Scrutinize training-scripts of pre-trained models
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Dataset Selection

▶ Performance between
datasets might differ

Mitigation:
▶ Test on large variety of

different distributions
pin/pout Figure: Anomaly Detection

performance of models on different
OOD datasets over 21 training runs
with error bars.
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Resource Limitations

▶ Optimization of DNNs is a resource-intensive process
▶ Resource requirements limit the number of individuals that

can reproduce a method

Mitigation:
▶ use pre-trained models
▶ train for fewer iterations
▶ do fewer experiments
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Dependencies

Software/Code, Data, pre-Trained models
▶ Sometimes difficult to set up
▶ Might be taken down at some point, e.g., [6]

Mitigation:
▶ Virtualization
▶ Reduce number of dependencies
▶ Copy dependencies to own code repository
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Complexity-Evidence Trade-off
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Complexity-Evidence Trade-off

▶ Increase Inferential reproducibility → increase complexity
▶ Increase Method reproducibility → reduced complexity
▶ Results reproducibility: it depends

Aspect Inferential Results Method

Nondeterminism More Experiments More Experiments
HP-Sensitivity More Experiments

Complexity Decrease Complexity Decrease Complexity
Dataset Selection More Experiments

Resource Limitations Decrease Decrease Decrease
Dependencies Reduce Dependencies
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Conclusion

▶ Complexity of experiments
decreases the reproducibility

▶ Strength of the empirical evidence
increases the reproducibility

▶ Trade-off
▶ Inferential Reproducibility more

important
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